Toggle meny
Årskurs F-3
Årskurs 4-6
Årskurs 7-9
Gymnasiet
Hur det fungerar
Filtrera
Rensa
Stäng
Sortera efter:
Senaste
(desc)
Centralt innehåll
Taluppfattning och tals användning:
Rationella tal och deras egenskaper.
Positionssystemet för tal i decimalform.
Det binära talsystemet och hur det kan tillämpas i digital teknik samt talsystem som använts i några kulturer genom historien, till exempel den babyloniska.
Tal i bråk- och decimalform och deras användning i vardagliga situationer.
Tal i procentform och deras samband med tal i bråk- och decimalform.
Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
Rationella tal, däribland negativa tal, och deras egenskaper samt hur talen kan delas upp och användas.
Positionssystemet och hur det används för att beskriva hela tal och tal i decimalform.
Olika talsystem och några talsystem som använts i olika kulturer genom historien.
Hur tal i bråk- och decimalform kan användas i vardagliga situationer.
De fyra räknesätten och regler för deras användning vid beräkningar med naturliga tal.
Metoder för beräkningar med naturliga tal och enkla tal i bråk- och decimalform vid överslagsräkning, huvudräkning och skriftlig beräkning. Användning av digitala verktyg vid beräkningar.
Rimlighetsbedömning vid uppskattningar och beräkningar.
Algebra:
Obekanta tal och deras egenskaper samt situationer där det finns behov av att beteckna ett obekant tal med en symbol.
Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven.
Metoder för enkel ekvationslösning.
Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas.
Hur algoritmer kan skapas och användas vid programmering. Programmering i visuella programmeringsmiljöer.
Matematiska likheter och hur likhetstecknet används för att teckna enkla ekvationer.
Variabler och deras användning i enkla algebraiska uttryck och ekvationer.
Metoder, däribland algebraiska, för att lösa enkla ekvationer.
Mönster i talföljder och geometriska mönster samt hur de konstrueras, beskrivs och uttrycks.
Programmering i visuella programmeringsmiljöer. Hur algoritmer skapas och används vid programmering.
Geometri:
Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
Konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala och dess användning i vardagliga situationer.
Symmetri i vardagen, i konsten och i naturen samt hur symmetri kan konstrueras.
Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas.
Jämförelse, uppskattning och mätning av längd, area, volym, massa, tid och vinkel med vanliga måttenheter. Mätningar med användning av nutida och äldre metoder.
Grundläggande geometriska två- och tredimensionella objekt samt deras egenskaper och inbördes relationer. Konstruktion av geometriska objekt, såväl med som utan digitala verktyg.
Jämförelse, uppskattning och mätning av längd, area, massa, volym, tid och vinkel med standardiserade måttenheter samt enhetsbyten i samband med detta.
Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas.
Skala vid förminskning och förstoring samt användning av skala i elevnära situationer.
Symmetri i planet och hur symmetri kan konstrueras.
Sannolikhet och statistik:
Sannolikhet, chans och risk grundat på observationer, simuleringar eller statistiskt material från vardagliga situationer. Jämförelser av sannolikheten vid olika slumpmässiga försök.
Enkel kombinatorik i konkreta situationer.
Tabeller och diagram för att beskriva resultat från undersökningar, såväl med som utan digitala verktyg. Tolkning av data i tabeller och diagram.
Lägesmåtten medelvärde, typvärde och median samt hur de kan användas i statistiska undersökningar.
Slumpmässiga händelser, chans och risk med utgångspunkt i observationer, simuleringar och statistiskt material. Jämförelse av sannolikhet vid olika slumpmässiga försök.
Lägesmåtten medelvärde, typvärde och median samt hur de används i statistiska undersökningar.
Samband och förändring:
Proportionalitet och procent samt deras samband.
Grafer för att uttrycka olika typer av proportionella samband vid enkla undersökningar.
Koordinatsystem och strategier för gradering av koordinataxlar.
Proportionalitet samt hur proportionella samband uttrycks i bråk-, decimal- och procentform.
Koordinatsystem och gradering av koordinataxlar.
Grafer för att uttrycka proportionella samband.
Problemlösning:
Strategier för matematisk problemlösning i vardagliga situationer.
Matematisk formulering av frågeställningar utifrån vardagliga situationer.
Strategier för att lösa matematiska problem i elevnära situationer.
Formulering av matematiska frågeställningar utifrån vardagliga situationer.
Användningsområde
Övning
Lektionsupplägg
Fristående lektioner
Elevexempel
Prov
Muntlig övning
Muntligt prov
Powerpoint och föreläsning
Pedagogisk planering
Videoföreläsning
Inspiration
Projektarbete
Uppgift kopplad till läromedel
Övningsprov
Övningar
Förklaringar
Elevexempel
Årskurs 4-6
Matematik
Filtrera
15 uppladdningar
Sortera efter:
Senaste
(desc)
Tabell
Lista